Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Pathol ; 118: 9-17, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537247

RESUMO

Immunohistochemical evaluation of mismatch repair protein (MMR) expression is an important screening tool in diagnostic pathology, where it is routinely used to identify subsets of colorectal cancers (CRCs) with either inherited or sporadic forms of microsatellite instability (MSI). MSH3 is not included in current MMR panels, although aberrant MSH3 expression is reported to occur in 40-60% of CRCs and is associated with elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) and a worse prognosis. In this study, we applied MSH3 immunohistochemistry and tetranucleotide MSI analysis to a cohort of 250 unselected CRCs to evaluate the potential use of the methods in routine practice. Partial, complete, and focal loss of nuclear MSH3 and its cytoplasmic mislocalization were evident in 67% of tumors, whereas MSI was evident in two to six of a panel of six tetranucleotide repeats in 46% of cases. However, concordance between MSH3 immunohistochemistry and tetranucleotide MSI results was only 61%, indicating the unsuitability of this combination of tests in routine pathology practice. MSH3 immunostaining was compromised in areas of tissue crush and autolysis, which are common in biopsy and surgical samples, potentially mitigating against its routine use. Although tetranucleotide MSI is clearly evident in a subset of CRCs, further development of validated sets of tetranucleotide repeats and either MSH3 or other immunohistochemical markers will be required to include EMAST testing in the routine evaluation of CRCs in clinical practice.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Colorretais , Imuno-Histoquímica/métodos , Instabilidade de Microssatélites , Proteína 3 Homóloga a MutS/análise , Reação em Cadeia da Polimerase/métodos , Artefatos , Humanos , Repetições de Microssatélites
2.
Mol Cell Biol ; 40(13)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32284349

RESUMO

Inactivation of DNA mismatch repair propels colorectal cancer (CRC) tumorigenesis. CRCs exhibiting elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) show reduced nuclear MutS homolog 3 (MSH3) expression with surrounding inflammation and portend poor patient outcomes. MSH3 reversibly exits from the nucleus to the cytosol in response to the proinflammatory cytokine interleukin-6 (IL-6), suggesting that MSH3 may be a shuttling protein. In this study, we manipulated three putative nuclear localization (NLS1 to -3) and two potential nuclear export signals (NES1 and -2) within MSH3. We found that both NLS1 and NLS2 possess nuclear import function, with NLS1 responsible for nuclear localization within full-length MSH3. We also found that NES1 and NES2 work synergistically to maximize nuclear export, with both being required for IL-6-induced MSH3 export. We examined a 27-bp deletion (Δ27bp) within the polymorphic exon 1 that occurs frequently in human CRC cells and neighbors NLS1. With oxidative stress, MSH3 with this deletion (Δ27bp MSH3) localizes to the cytoplasm, suggesting that NLS1 function in Δ27bp MSH3 is compromised. Overall, MSH3's shuttling in response to inflammation enables accumulation in the cytoplasm; reduced nuclear MSH3 increases EMAST and DNA damage. We suggest that polymorphic sequences adjacent to NLS1 may enhance cytosolic retention, which has clinical implications for inflammation-associated neoplastic processes.


Assuntos
Inflamação/metabolismo , Proteína 3 Homóloga a MutS/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Reparo de Erro de Pareamento de DNA , Células HCT116 , Humanos , Inflamação/genética , Proteína 3 Homóloga a MutS/análise , Proteína 3 Homóloga a MutS/genética , Sinais de Exportação Nuclear , Estresse Oxidativo/genética , Polimorfismo Genético , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...